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Abstract. Adaptive search heuristics are known to be valuable in ap-
proximating solutions to hard search problems. However, these tech-
niques are problem dependent. Inspired by the idea of life cycle stages
found in nature, we introduce a hybrid approach called the LifeCycle
model that simultaneously applies genetic algorithms (GAs), particle
swarm optimisation (PSOs), and stochastic hill climbing to create a gen-
erally well-performing search heuristics. In the LifeCycle model, we con-
sider candidate solutions and their fitness as individuals, which, based on
their recent search progress, can decide to become either a GA individ-
ual, a particle of a PSO, or a single stochastic hill climber. First results
from a comparison of our new approach with the single search algorithms
indicate a generally good performance in numerical optimization.

1 Introduction

In biology, the term life cycle refers to the various phases an individual passes
through from birth to maturity and reproduction [1]. This process often leads
to drastic transformations of the individual with stage specific adaptations to
a particular environment. This phenomenon is particularly amazing considering
that the genome remains the same within each cell and life stage, whereas the
morphology and behaviour of the phenotype can change drastically in accordance
to the requirements of the life stage niche. Some life cycle changes in nature are
one-time events such as sexual maturity. Other changes are re-occurring, such
as mating seasons. These stages are genetically determined and the individuals
have little or no influence on the change of the life cycle stage. The transition
between life cycle changes are often triggered by environmental factors. Environ-
mental changes often determine transitions from one life cycle stage to another.
Some animals are able to sense and predict these changes and can actively de-
cide to alter their life cycle stage. A particularly interesting animal that has
this capability is the microscopically small Symbion pandora, which lives as a
symbiont on its much larger host - the Norway lobster. The host provides food,



substrate, and transportation for the symbionts which only inhabit the mouth
parts of the host. This rich and diverse environment poses a great challenge to
the symbiont because the individual need to evacuate and recolonize the lobster
with each lobster moulting. The life stages of Symbion pandora include feeding
and non-feeding, sedentary and free swimming, as well as sexual and asexual
reproduction stages [2].

The ability of an individual to actively decide about its kind of life form
in response to its success in its current environment inspired us to the study
presented in this paper. The idea behind our LifeCycle model is to create a
self-adaptive search heuristic in which each individual (containing the candidate
solution) can decide whether it would prefer to belong to a population of a genetic
algorithm (GA), a particle swarm optimization (PSO), or become a solitary
stochastic hill climber (HC). The decision of the individual depends on its success
in searching the fitness landscape. Our motivation for this hybrid approach was
that each of these search techniques on its own has its specific problem dependent
strengths and weaknesses.

GAs, for instance, are widely applicable, and particularly powerful when do-
main knowledge can be incorporated in the operator design (see e.g. [3]). How-
ever, particle swarm optimisation (PSO) [4] can achieve clearly superior results
in many instances of numerical optimization, but there is no general superiority
compared to GAs (e.g. [5–9]). Hill climbers, in contrast, are good for local search
with a high probability of finding the closest optimum. However, for multimodal
functions, their performance is highly dependent on their starting position and
hill-climbing techniques often convergence prematurely at local optima. Their
main weakness compared to population based approaches, such as GAs and
PSOs, is that candidate solutions neither compete nor cooperate [10].

The goal of our LifeCycle model is to make a self-adaptive approach towards
a problem invariant search technique that can further take advantage of the
changing search requirements during the optimization, such as initial exploration
and local fine-tuning towards the end of the run.

2 The LifeCycle Model

The LifeCycle model consists of individuals starting out as PSO particles, which
can turn into GA individuals, then hill climbers, then back to particles and
so on. The structure of the LifeCycle model is illustrated in fig. 1. In all these
heuristics, we use one fitness evaluation per individual per iteration. A LifeCycle
individual switches its stage when it has made no fitness improvement for more
than 50 iterations.

2.1 The PSO model

The PSO model used in the LifeCycle model is similar to the traditional PSO
model described in [4]. The model consists of a number of particles moving
around in the search space, where the position of each particle represents a
candidate solution to a numerical problem. Each particle has a position vector xi,



program LifeCycle Model
begin

initialise
while (not terminate-condition) do

begin
for (all individuals)

evaluate fitness
switch LifeCycle stage if no recent improvement

for (PSO particles)
calculate new velocity vectors
move

for (GA individuals)
select new population
recombine population
mutate population

for (HillClimbers)
find possible new neighbouring solution
evaluate fitness for the new solution
shift to new solution with probability p

end
end

Fig. 1. Structure of the LifeCycle model.

a velocity vector vi and the position of the best candidate solution encountered
by the particle pi. The PSO also stores the overall best found point pg. The
memorized positions are used to attract particles to search space areas with
known good solutions.

In each iteration the velocity of each particle is updated in the following way

vi = χ(wvi + ϕ1i(pi − xi) + ϕ2i(pg − xi))

where χ is known as the constriction coefficient described in [11] and w is the
inertia weight described in [6]. ϕ1 and ϕ2 are random values, which are different
for each particle and for each dimension. The velocity vi of each particle is
limited by an upper threshold vmax. The position of each particle is updated in
each iteration by adding the velocity vector to the position vector, such that,
xi = xi + vi. The particles have no neighbourhood restrictions, meaning that
each particle can affect all other particles. This neighbourhood is of type star
(fully connected network), which has been shown to be a good topology ([5]).

2.2 The GA model

A classic genetic algorithm consists of a population of individuals refining their
candidate solutions through interaction and adaptation. Each individual rep-
resents a candidate solution to the given problem. After initialisation the GA
enters a loop, in which the population is evaluated, a new population is selected
and this new population is altered (p. 151 [10]). The LifeCycle GA model uses
binary tournament selection (p. 61 [12]) to generate a new population and elitism



to ensure the survival of the individual with the best fitness. The LifeCycle GA
model alters the population by crossover and mutation. The crossover opera-
tor used in the LifeCycle GA model is the so-called arithmetic crossover. This
operator replaces two parent individuals selected for crossover with two child
individuals as follows:

xchild1 = w ∗ xparent1 + (1− w) ∗ xparent2

xchild2 = w ∗ xparent2 + (1− w) ∗ xparent1

where w is a random value between zero and one. The crossover probability
PC determines the probability of an individual to be selected for crossover.
For each dimension the probability of mutation PM determines whether or not
to mutate. The mutation scheme used in the LifeCycle GA model is the non-
uniform mutation described on page 103 in [12]. Entry j of an individual is
mutated according to:

∆xj =

{
+(Max− xj)(1− r(1−t/T )b

)
−(xj −Min)(1− r(1−t/T )b

)

with a 50% chance each. Max is the search space maximum, Min is the min-
imum, r is a random number in [0..1], t is the current iteration, T is the total
number of iterations and b is a parameter determining the degree of iteration
number dependency. Hence, the effect of mutation decreases over the course of
the iterations with this scheme.

2.3 The HillClimber

HillClimbers are individuals that refine their candidate solution independently
of other individuals by examining the local neighbourhood. The hill-climbing
method used in the LifeCycle model is a stochastic hill-climber as described in
[10] pp. 118-120. Each HillClimber consists of a solution xc. For each iteration,
a new candidate solution xn is selected within the neighbourhood of xc. xc is
replaced by xn with probability p given by

p = 1/(1 + exp(
eval(xn)− eval(xc)

T
)) (minimisation)

where T is a parameter determining the influence of the relative merit (differ-
ence in fitness performance). In this paper, we experimented with a constant
T=10, which is different from simulated annealing. The better the fitness of the
neighbouring point, the higher the chance of replacement.

3 Experimental settings

In our experiments, we compared the performance of the standard PSO, the
standard GA, HillClimbers and the LifeCycle model on five numerical benchmark
problems (all minimisation) (see table 1). The first two are unimodal while the
latter three are multimodal with many local minima.

The initial population of GAs and PSOs is usually uniformly distributed over
the entire search space. According to Angeline [8], this can give false indications



Table 1. Test functions
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Table 2. Search space and Initialisation ranges

Function Search space Initialisation range

f1 Sphere −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100
f2 Rosenbrock −100 ≤ xi ≤ 100 15 ≤ xi ≤ 30
f3 Griewank −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600
f4 Rastrigin −10 ≤ xi ≤ 10 2.56 ≤ xi ≤ 5.12
f5 Ackley −32.768 ≤ xi ≤ 32.768 16.384 ≤ xi ≤ 32.768

of relative performance, especially if the search space is symmetric around the
origin where many test functions have their global optimum such as in the classic
benchmarks that we used in this paper. In order to prevent this, we used the
asymmetric initialisation method by Angeline [8] for all experiments. Search
space and initialisation ranges for the experiments are shown in table 2.

In all experiments the population of the LifeCycle model was fixed at 150
individuals. These were all initialised as PSO particles.

Table 3. Crossover and mutation probability used in the GA.

Function f1 Sphere f2 Rosenbrock f3 Griewank f4 Rastrigin f5 Ackley

Crossover prob. 0.60 0.50 0.50 0.20 0.50

Mutation prob. 0.30 0.30 0.40 0.02 0.30

3.1 Settings for the PSO

In the PSO model the upper limits for ϕ1 and ϕ2 were set to 2.0. The inertia
weight w was linearly decreased from 0.7 to 0.4 and the constriction coefficient
χ was set to 1. The maximum velocity vmax of each particle was set to half the
length of the search space for each dimension (e.g. vmax = 100 for f1 and f2).
Previous research by Shi [6] regarding scalability of the standard PSO showed
that the performance of the standard PSO is not sensitive to the population size.
This is also our experience from earlier work ([9, 13]). In all PSO experiments,
we used a fixed population size of 20 particles.

3.2 Settings for the GA

For the GA, we used the crossover and mutation probabilities shown in table 3.
Neither selection nor crossover were performed for population sizes smaller than
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Fig. 2. Sphere function: (a) Performance of the standard GA with population size 100,
the standard PSO with population size 20, 25 HillClimbers and the LifeCycle model
with population size 150. (b) Composition of LifeCycle individuals.
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Fig. 3. Rosenbrock function: (a) Performance. (b) Composition of LifeCycle individuals

three. Moreover, we set the mutation loop dependency b to 5 and used a fixed
population size of 100 individuals.

3.3 Settings for the HillClimbers

In our HillClimber experiments, we used a constant temperature parameter T
= 10. The size of the search neighbourhood linearly decreased from 1 to 0.001
percent of the search space for each dimension to allow fine-tuning towards
the end of the run. In all HillClimbing experiments we used 25 HillClimbers
simultaneously and indepedently from each other.

4 Experimental results

The test functions that we used in our experiments were all 100 dimensional. All
experiments were running for 2.500.000 evaluations. Table 4 and fig. 2 to 6 show



the fitness vs. the number of evaluations regarding the five benchmark problems.
The graphs illustrate the mean values of 50 repetitions for each experiment.

Table 4. Experimental results

Function PSO GA HC LC

f1 Sphere 1.7401E − 106 7.3762E − 3 249.5553 4.9468E − 8
f2 Rosenbrock 62.4291 99.9857 13908.6493 94.7642
f3 Griewank 1.0003E − 2 175.1830 269.9571 5.0235E − 3
f4 Rastrigin 154.4770 0.5387 725.8330 83.4788
f5 Ackley 19.8617 1.3563E − 2 21.2318 2.0350E − 11
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Fig. 4. Griewank function: (a) Performance. (b) Composition of LifeCycle individuals.

4.1 Performance

Figure 2(a) to 6(a) show the performance of the LifeCycle (LC) model compared
to the standard PSO (PSO), the standard GA (GA) and the HillClimbing (HC)
algorithm described in section 2.

For the Sphere (fig. 2(a)) and Rosenbrock (fig. 3(a)) function the standard
PSO turned out to have the best performance. In both cases HillClimbers yielded
the fastest fitness improvements, but failed to find an exact solution. Both the
LifeCycle and GA models converged slower than the PSO. The LifeCycle model
converged faster and to a better value than the standard GA. Regarding the
Griewank function (fig. 4(a)) the standard PSO outperformed the standard GA
and the HillClimbing algorithm by far. Here, the search improvements of the
LifeCycle model were a bit slower but eventually better compared to the standard
PSO. For the Rastrigin function (fig. 5(a)) the standard GA found the best
solution, but required more time than the LifeCycle model and the PSO. Here,
the PSO achieved the fastest initial search improvements, but was eventually



outperformed by the LifeCycle model towards the end of the run. HillClimbers
turned out to be ineffective. Finally, regarding the Ackley function (fig. 6(a)), we
found that the PSO and the HillClimbing algorithms were clearly outperformed
by the standard GA and the LifeCycle model, where the latter outperformed all
other heuristics significantly.
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Fig. 5. Rastrigin function: (a) Performance. (b) Composition of LifeCycle individuals.

4.2 Composition of the LifeCycle individuals

Figures 2(b) to 6(b) show the frequency of the life cycle stages over time. All
LifeCycle individuals were set to start out as PSO particles. For the Sphere (fig.
2(b)) and Rosenbrock (fig. 3(b)) functions all individuals prefered to become
HillClimbers in the beginning of the run. After approximately 50% of the eval-
uations, a majority of the individuals turned into GA individuals. Moreover,
the frequency of the PSO individuals increased towards the end of the run. Re-
garding the Griewank (fig. 4(b)) and Rastrigin (fig. 5(b)) functions, we found
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Fig. 6. Ackley function: (a) Performance. (b) Composition of LifeCycle individuals.



a similar self-adaptation pattern with a high frequency of HillClimbers in the
beginning of the run. However, in contrast to the other two test functions, most
HillClimbers turned into PSO particles during the run. At the end of the run, we
found that GA individuals increasingly took the place of the PSO particles. In
case of the Ackley function (fig. 6(b)), we found that the LifeCycle population
consisted of a majority of PSO particles, which further increased over time.

5 Discussion and future work

Our approach of combining three standard adaptive optimisation algorithms into
one self-adaptive hybrid approach turned out to be an improvement over the in-
dividual algorithms. Our results show that the LifeCycle heuristic has a generally
good performance on all benchmark problems that we used in this study in con-
trast to the single adaptive algorithms, which have a highly problem dependent
performance. For the Sphere (fig. 2) and Rosenbrock (fig. 3) functions, our results
suggest that the best strategy is to start with a large number of HillClimbers,
which are later turned into PSO particles. On first sight this seems to be counter-
intuitive, because of the fine-tuning abilities of the HillClimbers. However, the
Stochastic HillClimber has the problem that the acceptance probability of a
new candidate solution approaches 0.5 in case of very small fitness differences
between neighboured candidate solutions. Furthermore, the neighbourhood step
size in continuous optimization has a strong impact on the quality of the re-
sults. A too low step size slows down the hill climber unnecessarily whereas a
too large step size can result in missing the global optimum. Judging from our
experimental results the LifeCycle model helps the standard models to achieve
superior results for multimodal testfunctions. This can be seen in figures 4 to
6 for the Griewank, Rastrigin and Ackley functions. For all these three func-
tions the LifeCycle model works best with many PSO particles. However, the
pure PSO model is clearly outperformed, especially for the Ackley function (fig.
6(a)). In the present study we focused on the most simple and classic versions
of GAs, PSOs, and HillClimbers. An interesting future extension would be to
use the life cycle heuristic based on more advanced heuristics, such as spatially
extended PSOs [13], SOC EAs [14], and simulated annealing [12]. Another idea
would be to introduce tabu search as a fourth search heuristic to the LifeCy-
cle model. Other future work could be to investigate other transition schemes.
Furthermore, one could try to exchange one PSO particle with several GA indi-
viduals and vice versa, since GAs work better with much larger population sizes
than PSOs.
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